Tuesday, 16 October 2018

Moving average image filter matlab


O cientista e engenheiros guia para processamento de sinal digital Por Steven W. Smith, Ph. D. Como o nome indica, o filtro de média móvel opera fazendo a média de um número de pontos a partir do sinal de entrada para produzir cada ponto no sinal de saída. Na forma de equação, isto é escrito: Onde está o sinal de entrada, é o sinal de saída, e M é o número de pontos na média. Por exemplo, num filtro de média móvel de 5 pontos, o ponto 80 no sinal de saída é dado por: Como alternativa, o grupo de pontos do sinal de entrada pode ser escolhido simetricamente em torno do ponto de saída: Isto corresponde à alteração da soma em Eq . 15-1 de: j 0 a M -1, para: j - (M -1) / 2 a (M -1) / 2. Por exemplo, em um filtro de média móvel de 10 pontos, o índice, j. Pode variar de 0 a 11 (média de um lado) ou -5 a 5 (média simétrica). A média simétrica requer que M seja um número ímpar. A programação é ligeiramente mais fácil com os pontos de apenas um lado no entanto, isso produz uma mudança relativa entre os sinais de entrada e saída. Você deve reconhecer que o filtro de média móvel é uma convolução usando um kernel de filtro muito simples. Por exemplo, um filtro de 5 pontos tem o kernel do filtro: 82300, 0, 1/5, 1/5, 1/5, 1/5, 1/5, 0, 08230. Ou seja, o filtro de média móvel é uma convolução Do sinal de entrada com um impulso retangular com uma área de um. A Tabela 15-1 mostra um programa para implementar o filtro de média móvel. Resposta de Freqüência do Filtro de Média Corrente A resposta de freqüência de um sistema LTI é a DTFT da resposta de impulso. A resposta de impulso de uma média móvel de L - Filtro médio é FIR, a resposta de freqüência reduz à soma finita Podemos usar a identidade muito útil para escrever a resposta de freqüência como onde temos deixar ae menos jomega. N 0 e M L menos 1. Podemos estar interessados ​​na magnitude desta função para determinar quais freqüências passam pelo filtro sem atenuação e quais são atenuadas. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianos por amostra. Observe que, em todos os três casos, a resposta de freqüência tem uma característica de passagem baixa. Uma componente constante (frequência zero) na entrada passa através do filtro sem ser atenuada. Certas frequências mais elevadas, como pi / 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro lowpass, então não temos feito muito bem. Algumas das frequências mais altas são atenuadas apenas por um factor de cerca de 1/10 (para a média móvel de 16 pontos) ou 1/3 (para a média móvel de quatro pontos). Podemos fazer muito melhor do que isso. O gráfico acima foi criado pelo seguinte código de Matlab: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-iomega)) H8 (1/8 ) (1-exp (-iomega8)) ./ (1-exp (-iomega)) lote (omega , Abs (H4) abs (H8) abs (H16)) eixo (0, pi, 0, 1) Copyright copy 2000- - Universidade da Califórnia, BerkeleyThe Scientist e Engineers Guide to Digital Signal Processing Por Steven W. Smith, D. Como o nome indica, o filtro de média móvel opera fazendo a média de um número de pontos a partir do sinal de entrada para produzir cada ponto no sinal de saída. Na forma de equação, isto é escrito: Onde está o sinal de entrada, é o sinal de saída, e M é o número de pontos na média. Por exemplo, num filtro de média móvel de 5 pontos, o ponto 80 no sinal de saída é dado por: Como alternativa, o grupo de pontos do sinal de entrada pode ser escolhido simetricamente em torno do ponto de saída: Isto corresponde à alteração da soma em Eq . 15-1 de: j 0 a M -1, para: j - (M -1) / 2 a (M -1) / 2. Por exemplo, em um filtro de média móvel de 10 pontos, o índice, j. Pode variar de 0 a 11 (média de um lado) ou -5 a 5 (média simétrica). A média simétrica requer que M seja um número ímpar. A programação é ligeiramente mais fácil com os pontos de apenas um lado no entanto, isso produz uma mudança relativa entre os sinais de entrada e saída. Você deve reconhecer que o filtro de média móvel é uma convolução usando um kernel de filtro muito simples. Por exemplo, um filtro de 5 pontos tem o kernel do filtro: 82300, 0, 1/5, 1/5, 1/5, 1/5, 1/5, 0, 08230. Ou seja, o filtro de média móvel é uma convolução Do sinal de entrada com um impulso retangular com uma área de um. A Tabela 15-1 mostra um programa para implementar o filtro de média móvel.

No comments:

Post a Comment